Industry use cases of Neural Network.

What Are Neural Networks?

How Artificial Neural Networks Function?

ANNs are statistical models designed to adapt and self-program by using learning algorithms in order to understand and sort out concepts, images, and photographs. For processors to do their work, developers arrange them in layers that operate in parallel. The input layer is analogous to the dendrites in the human brain’s neural network. The hidden layer is comparable to the cell body and sits between the input layer and output layer (which is akin to the synaptic outputs in the brain). The hidden layer is where artificial neurons take in a set of inputs based on synaptic weight, which is the amplitude or strength of a connection between nodes. These weighted inputs generate an output through a transfer function to the output layer.

How Do You Train a Neural Network?

Once you’ve structured a network for a particular application, training (i.e., learning), begins. There are two approaches to training. Supervised learning provides the network with desired outputs through manual grading of network performance or by delivering desired outputs and inputs. Unsupervised learning occurs when the network makes sense of inputs without outside assistance or instruction.

Why Do We Use Neural Networks?

Neural networks’ human-like attributes and ability to complete tasks in infinite permutations and combinations make them uniquely suited to today’s big data-based applications. Because neural networks also have the unique capacity (known as fuzzy logic) to make sense of ambiguous, contradictory, or incomplete data, they are able to use controlled processes when no exact models are available.

Industry Applications of Neural Networks

Here’s a list of other neural network engineering applications currently in use in various industries:

  • Aerospace: Aircraft component fault detectors and simulations, aircraft control systems, high-performance auto-piloting, and flight path simulations
  • Automotive: Improved guidance systems, development of power trains, virtual sensors, and warranty activity analyzers
  • Electronics: Chip failure analysis, circuit chip layouts, machine vision, non-linear modeling, prediction of the code sequence, process control, and voice synthesis
  • Manufacturing: Chemical product design analysis, dynamic modeling of chemical process systems, process control, process and machine diagnosis, product design and analysis, paper quality prediction, project bidding, planning and management, quality analysis of computer chips, visual quality inspection systems, and welding quality analysis
  • Mechanics: Condition monitoring, systems modeling, and control
  • Robotics: Forklift robots, manipulator controllers, trajectory control, and vision systems
  • Telecommunications: ATM network control, automated information services, customer payment processing systems, data compression, equalizers, fault management, handwriting recognition, network design, management, routing and control, network monitoring, real-time translation of spoken language, and pattern recognition (faces, objects, fingerprints, semantic parsing, spell check, signal processing, and speech recognition)

Business Applications of Neural Networks

Here are further current examples of NN business applications:

  • Banking: Credit card attrition, credit and loan application evaluation, fraud and risk evaluation, and loan delinquencies
  • Business Analytics: Customer behavior modeling, customer segmentation, fraud propensity, market research, market mix, market structure, and models for attrition, default, purchase, and renewals
  • Defense: Counterterrorism, facial recognition, feature extraction, noise suppression, object discrimination, sensors, sonar, radar and image signal processing, signal/image identification, target tracking, and weapon steering
  • Education: Adaptive learning software, dynamic forecasting, education system analysis and forecasting, student performance modeling, and personality profiling
  • Financial: Corporate bond ratings, corporate financial analysis, credit line use analysis, currency price prediction, loan advising, mortgage screening, real estate appraisal, and portfolio trading
  • Medical: Cancer cell analysis, ECG and EEG analysis, emergency room test advisement, expense reduction and quality improvement for hospital systems, transplant process optimization, and prosthesis design
  • Securities: Automatic bond rating, market analysis, and stock trading advisory systems
  • Transportation: Routing systems, truck brake diagnosis systems, and vehicle scheduling

The Future of Neural Networks

Here are some likely future developments in neural network technologies:

  • Fuzzy Logic Integration: Fuzzy logic recognizes more than simple true and false values — it takes into account concepts that are relative, like somewhat, sometimes, and usually. Fuzzy logic and neural networks are integrated for uses as diverse as screening job applicants, auto-engineering, building crane control, and monitoring glaucoma. Fuzzy logic will be an essential feature in future neural network applications.
  • Pulsed Neural Networks: Recently, neurobiological experiment data has clarified that mammalian biological neural networks connect and communicate through pulsing and use the timing of pulses to transmit information and perform computations. This recognition has accelerated significant research, including theoretical analyses, model development, neurobiological modeling, and hardware deployment, all aimed at making computing even more similar to the way our brains function.
  • Specialized Hardware: There’s currently a development explosion to create the hardware that will speed and ultimately lower the price of neural networks, machine learning, and deep learning. Established companies and startups are racing to develop improved chips and graphic processing units, but the real news is the fast development of neural network processing units (NNPUs) and other AI specific hardware, collectively referred to as neurosynaptic architectures. Neurosynaptic chips are fundamental to the progress of AI because they function more like a biological brain than the core of a traditional computer. With its Brain Power technology, IBM has been a leader in the development of neurosynaptic chips. Unlike standard chips, which run continuously, Brain Power’s chips are event-driven and operate on an as-needed basis. The technology integrates memory, computation, and communication.
  • Improvement of Existing Technologies: Enabled by new software and hardware as well as by current neural network technologies and the increased computing power of neurosynaptic architectures, neural networks have only begun to show what they can do. The myriad business applications of faster, cheaper, and more human-like problem-solving and improved training methods are highly lucrative.
  • Robotics: There have been countless predictions about robots that will be able to feel like us, see like us, and make prognostications about the world around them. These prophecies even include some dystopian versions of that future, from the Terminator film series to Blade Runner and Westworld. However, futurist Yonck says that we still have a very long way to go before robots replace us: “While these robots are learning in a limited way, it’s a pretty far leap to say they’re ‘thinking.’ There are so many things that have to happen before these systems can truly think in a fluid, non-brittle way. One of the critical factors I bring up in my book is the ability to establish and act on self-determined values in real-time, which we humans do thousands of times a day. Without this, these systems will fail every time conditions fall outside a predefined domain.”

--

--

Get the Medium app

A button that says 'Download on the App Store', and if clicked it will lead you to the iOS App store
A button that says 'Get it on, Google Play', and if clicked it will lead you to the Google Play store